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Annex 4: 
Proportion of urban residents and urban land less than 
10 metres above sea level 

Method in brief 

This analysis, produced for the Coalition’s Climate Emergency, Urban Opportunity1 report, 

estimates the share of the population living in low-elevation coastal zones and thus exposed 

to coastal hazards – and the share of that population that is urban. The analysis was 

conducted by Deborah Balk (CUNY Institute for Demographic Research, City University of 

New York), Gordon McGranahan (The Institute of Development Studies), Kytt MacManus 

(Center for International Earth Science Information Network, Columbia University) and 

Hasim Engin (CUNY Institute for Demographic Research, City University of New York). The 

results presented in Seizing the Urban Opportunity and the six accompanying country 

reports are drawn directly from that analysis. However, since the methodology is reproduced 

here as it appeared in the original 2019 report, with only minimal edits, the selected results 

presented at the end are not specific to the six countries, but rather the same as were 

included in the original methodology. 

Scope of analysis 

The overall goal of this analysis was to update estimates of the population living at risk of 

coastal hazards, using the basic methodology established in McGranahan et al., 2007.2 

Expanding upon that research, here we also aim to make some additional distinctions in the 

understanding of differential risk and degrees of urbanisation. 

Therefore, we distinguish between populations at high risk (living below 5 metres contiguous 

to coast) and those at medium risk (living at 5–10 metres contiguous to coast);3 and we 

distinguish between dwellers of cities and other types of urban and quasi-urban areas (such 

as peri-urban outlying areas and smaller towns). We also describe changes in the past 25 

years, from 1990 to 2015. 

Data 

In the 10 years since the 2007 study, many new renderings of urban areas have become 

available. We have selected data from the Global Human Settlement Layer (GHSL) project 

suite produced by the Joint Research Centre (JRC) of the European Commission.4 At its 

core are more than 40,000 Landsat scenes, which have been processed in a consistent 

manner across countries and over time using advanced machine learning algorithms. The 

data, GHS-BUILT described in Table A4.1, are binary, indicating either the presence or 

absence of a built structure in each 30-metre grid cell, and aggregated to 250 metres by the 

data producers at the JRC (see Florczyk et al., 2019) to represent the fraction of built-up 

land in each pixel. Data are available for four time periods (1975, 1990, 2000, and 2015), of 

which we used from 1990 to 2015 here. (We do not have population data at a spatial 

resolution that make analysis of 1975 meaningful.) This dataset has been cross-validated or 

analysed with census-designated classes of urbanisation in the recent studies of the U.S., 
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and this process generally confirmed the accuracy of the GHSL algorithms, except perhaps 

in very sparsely settled rural regions.5 

A second derived data product, GHS-SMOD, was used to construct a “degree of 

urbanisation” grid.6 This modelled surface uses built-up area (GHS-BUILT) along with 

population data (GPW v4.11 input data reallocated) in the form of GHS-Pop (described 

momentarily) and a set of density and proximity criteria to classify population and land area 

into seven classes along a rural-to-urban continuum. This new data product has not yet been 

cross-validated in the peer-reviewed literature, but such studies are under way. We felt that it 

was important to use a refined measure of urban locations rather than a simple dichotomy 

for this study, but owing to the owing to the fact that rigorous validation has not yet been 

completed, we reduced the seven classes to three as indicated in Table A4.2. In broad 

strokes, these represent cities, other urban and quasi-urban locations (such as towns, peri-

urban locations), and rural areas. We also used GRUMP, and simple built-up thresholds 

from GHS-BUILT, as a type of sensitivity analysis7 on the urban classifications. 

In an important departure from earlier studies,8 the data used here to construct the low 

elevation coastal zone (LECZ) represent recent advances in the processing of the underlying 

data. The underlying data, from the Shuttle Radar Topography Mission (SRTM), have known 

vertical errors, whereby some low-lying vegetated areas are erroneously estimated—what is 

known as tree-height bias. Corrections to the SRTM have been made in a new database, the 

Multi-Error-Removed Improved-Terrain DEM (MERIT), and it is that dataset that is the basis 

of the LECZ exposure used here.9 We used the original SRTM data for the sensitivity 

analysis.10 

For population data, we used the GHS-Pop data as our primary data, and GPW v.4.11 (an 

earlier version of which was used in the original McGranahan et al. study11) for the sensitivity 

analysis. The GHS-Pop data apply the GPW v.4.11 inputs and reallocate population to GHS-

BUILT areas. In this way, population from large, sparsely populated administrative units is 

moved towards the detected built-up area rather than being assumed to be evenly 

distributed throughout the entire polygon. 

Since the population data and the urban extent data both use GHS-BUILT to reallocate 

population and then classify those areas in varying degrees of urban, they are internally 

consistent. For this reason, we used these as our basic data product for the production new 

estimates of populations at risk in the LECZ along an urban continuum. These internally 

consistent data, however, may tend to somewhat over-concentrate population into areas that 

are obviously built-up, leading to somewhat more urban residents. Because GHSL is not as 

expansive as the night-time lights used in the 2007 study12 (which were very inclusive of core 

urban areas and their surrounding areas), we used a newer class of estimates of urban land 

than in the initial study; these data tend to produce smaller “core” urban centres but also a 

wider range of the full urban continuum. 
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Table A4.1. Data Sources13 

Theme Dataset Abbreviation Spatial 
resolution 

Reference 

Elevation Shuttle Radar Topography 
Mission elevation data 

SRTM 90m ISciences, 200314 

Multi-Error-Removed 
Improved-Terrain DEM 

MERIT 90m Yamazaki et al., 201715 

Urban rural 
classifications 

Global Human Settlement 

– Settlement “degree of 
urbanisation” Model Grid 

GHS-SMOD 1km Florczyk et al., 201916 

Global Human Settlement 
– Built-up Grid 

GHS-BUILT 300m Pesaresi et al., 201517 

Global Rural Urban 
Mapping Project 

GRUMP 1km CIESIN et al., 201718 

Population Global Human Settlement 
– Population Grid 

GHS-Pop 300m JRC and CIESIN, 201819 

Gridded Population of the 
World, v.4.11 

GPW v.4.11 1km CIESIN, 201820 

 

Table A4.2. Urban classifications according to GHS-SMOD Data 

Code Short formal  
description 

Intuitive 
description 

Formalisation 

RUR Rural grid cells Rural areas xpop21 <300 OR ∑xpop(4-
conn cluster22 of xpop 
>300) <5000 

LDC Urban clusters Towns or suburbs xpop >300 AND ∑xpop(4-
conn cluster) >5000, no 
generalisation step, AND 
not “urban centres” 

HDC Urban centres Cities {xpop >1500 OR xbu23>0.5 
} AND ∑xpop(4-conn 
cluster) >50000, followed 
by generalisation step: 
single cluster, iterative 3x3 
kernel union-majority filter 
until idempotence, filling 
gaps (holes) < 15 square 
km 
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Approach 

We used the above layers to estimate “zonal statistics” as described above. Table A4.3 

highlights the processing steps necessary to condition the data layers, make them 

compatible with one another, and overlay them in order to generate the estimates in Tables 

A4.4 and A4.5. This includes re-projecting spatial layers, aggregating finely resolved data to 

compatible resolutions, and so forth. The data were all re-projected into World Geodetic 

System 1984 (WGS84) and aggregated or resampled to 300 metres resolution to conform 

with GHS-POP inputs. The analysis was undertaken in ArcGIS, python and R. 

 

Table A4.3. Summary of basic data processing steps 

Data type/step Processing decisions and steps 

Elevation 

Aggregate MERIT-DEM The MERIT-DEM elevation data were aggregated with a 
Majority Filter from approximately 100m to approximately 
300m to conform with population and built-up inputs 
aggregated with a Majority Filter from approximately 100m to 
approximately 300m to conform with population and built-up 
inputs. 

Create LECZ extracts The aggregated MERIT-DEM data were extracted into 5m and 
10m zones. 

Population and built-up preprocessing 

Extract GHS-POP was extracted by country and LECZ. 

Extract and project GHS-BUILT was extracted by country and LECZ, and 
projected from Mollweide into WGS84 to conform with the 
native projection of elevation data. 

Resample and extract GHS-SMOD, GPW v.4.11 and GRUMP were down-sampled to 
300m and extracted by country and LECZ. GHS-SMOD was 
projected from Mollweide into WGS84 to conform with the 
native projection of elevation data. 

Derivation of urban gradients 

Threshold GHS-BUILT GHS-BUILT was transformed into two binary masks of Built-
up/Not Built-up. The first mask assumed that any pixel greater 
than or equal to 1 pct Built-up was in the Built-up category. 
The second mask assumed that any pixel greater or equal to 
50 pct Built-up was in the Built-up category. 

Aggregate GHS-SMOD GHS-SMOD was aggregated to produce two binary masks. 
The first mask combined SMOD into three classes: High 
Density Clusters (HDC), Low Density Clusters (LDC) and Rural 
Areas (RUR). The second mask combined SMOD into two 
classes: (HDC, LDC), and RUR, respectively. 

Zonal statistics 

Calculation More than 100,000 individual zonal statistics tables were 
produced for every combination of inputs, by country and 
LECZ. 
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Limitations 

The elevation data was produced and distributed in the WGS84 Geographic Coordinate 

System. The data from GHSL, however, were produced and distributed in the Mollweide 

Equal Area Projected Coordinate System (not including GHS-POP, which is also released in 

a WGS84 version). In order to conduct analyses on these data sources it is necessary to 

harmonise their coordinate systems, but the projection of raster data is not without 

complications. 

When a raster dataset is projected from one coordinate system to another, the registration 

and total number of pixels represented are altered. In other words, the number of pixels may 

change along with the location of those pixels relative to ground truth. We opted to maintain 

the projection of the elevation data source (WGS84) in order not to introduce uncertainties 

about the location of the LECZs. We therefore needed to project GHS-BUILT and GHS-

SMOD to conform with the elevation source. 

The thematic layers (GHS-BUILT, GHS-SMOD) were not simple to validate owing to the fact 

that there is no available alternative source for these data to compare with. We expect that 

any error introduced by projecting these data from Mollweide to WGS84 using a “nearest 

neighbour” approach is quite minimal; however, it should be noted that because of the fact 

that the LECZs represent small swathes of land area, they are also more sensitive to any 

apparent shifts of pixel locations. Although the projection issue does produce some 

uncertainty, it would not have been possible to use these data sources together without 

taking this approach. 

Selected results 

Table A4.4 presents selected results from the analysis to provide more detail about countries 

that might be of particular interest. Table A4.5 further identifies the population growth rate in 

specific low elevation coastal zones. 

 

Table A4.4. Population and percent of national population in urban centres and quasi-

urban clusters in the LECZ, 2015, for select countries  

Country Total population in 
urban centres in 
the 10m LECZ 

% of country 
population in 
urban centres in 
the LECZ 

 

Total population in 
quasi-urban clusters in 
the LECZ 

% of country 
population in 
quasi-urban 
clusters in the 
LECZ 

Indonesia 34,804,741 13.5% 12,596,966 4.9% 

China 129,506,529 9.4% 52,128,053 3.8% 

India 55,216,398 4.2% 15,611,043 1.2% 

Mexico 2,916,240 2.3% 1,508,959 1.2% 

Ghana 541,916 2.0% 643,626 2.3% 

Tanzania 236,783 0.4% 104,160 0.2% 

 

Table A4.5. Average annual growth rate of the urban centre, quasi-urban cluster, rural 

and total population in the LECZ globally, 2000–2015 
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Elevation Total population 
growth rate 

Urban centre 
population 
growth rate 

Quasi-urban cluster 
population growth 
rate 

Rural population 
growth rate 

0–5 m 1.41% 2.26% 0.67% 0.54% 

5–10m 1.24% 1.85% 0.23% 0.32% 

0–10m 1.30% 1.98% 0.41% 0.42% 

non-LECZ 1.13% 1.62% 0.68% 0.78% 

 

 

 

 

Endnotes 

1 CUT, 2019, “Climate Emergency, Urban Opportunity.” 
2 McGranahan, Balk, and Anderson, 2007, “The Rising Tide: Assessing the Risks of Climate Change 

and Human Settlements in Low Elevation Coastal Zones,” Environment and Urbanization. 
3 According to Gesch, 2018, LECZs constructed on the DEMs using values below 5 metres in single 

increments produce high errors. For this reason, we construct two zones only. See Gesch, 2018, 

“Best Practices for Elevation-Based Assessments of Sea-Level Rise and Coastal Flooding Exposure,” 

Frontiers in Earth Science. 
4 Florczyk et al., 2019, “GHS Urban Centre Database 2015, Multitemporal and Multidimensional 

Attributes - European Union Open Data Portal”; Pesaresi et al., 2015, “GHS-BUILT R2015B - GHS 

Built-up Grid, Derived from Landsat, Multitemporal (1975, 1990, 2000, 2014).” 
5 D. Balk et al., 2018, “Understanding Urbanization: A Study of Census and Satellite-Derived Urban 

Classes in the United States, 1990-2010,” PLOS ONE. 
6 Florczyk et al., 2019, “GHS Urban Centre Database 2015, Multitemporal and Multidimensional 

Attributes - European Union Open Data Portal.” 
7 The sensitivity analysis compared estimated populations (or urban class, or elevation) by varying 

input data sets in order to see the impacts of data choice on the final results. (These are not accuracy 

assessments, because any set of input data might have their own associated inaccuracies.  
8 McGranahan, Balk, and Anderson, 2007, “The Rising Tide: Assessing the Risks of Climate Change 

and Human Settlements in Low Elevation Coastal Zones,” Environment and Urbanization; CIESIN, 

2013, “Low Elevation Coastal Zone (LECZ) Urban-Rural Population and Land Area Estimates, 

Version 2.” 
9 Yamazaki et al., 2017, “A High-Accuracy Map of Global Terrain Elevations,” Geophysical Research 

Letters. 
10 ISciences, 2003, “SRTM30 Enhanced Global Map – Elevation/Slope/Aspect.” 
11 McGranahan, Balk, and Anderson, 2007, “The Rising Tide: Assessing the Risks of Climate Change 

and Human Settlements in Low Elevation Coastal Zones,” Environment and Urbanization. 
12 Night-time lights are known to have a “blooming” quality which leads to apparently larger settled 

areas. Therefore, urban areas tend to include surrounding settlements as well.  
13 Note: Grey background refers to data used in sensitivity analysis only. 
14 ISciences, 2003, “SRTM30 Enhanced Global Map – Elevation/Slope/Aspect.” 
15 Yamazaki et al., 2017, “A High-Accuracy Map of Global Terrain Elevations,” Geophysical Research 

Letters. 
16 Florczyk et al., 2019, “GHS Urban Centre Database 2015, Multitemporal and Multidimensional 

Attributes - European Union Open Data Portal.” 
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17 Pesaresi et al., 2015, “GHS-BUILT R2015B - GHS Built-up Grid, Derived from Landsat, 

Multitemporal (1975, 1990, 2000, 2014).” 
18 CIESIN et al., 2017, “Global Rural-Urban Mapping Project, Version 1 (GRUMPv1): Urban Extent 

Polygons, Revision 01”; see also D. L. Balk et al., 2006, “Determining Global Population Distribution: 

Methods, Applications and Data,” in Advances in Parasitology. 
19 JRC and CIESIN, 2018, “GHS Population Grid, Derived from GPW4, Multitemporal (1975, 1990, 

2000, 2015) - European Union Open Data Portal.” 
20 CIESIN, 2018, “Gridded Population of the World, Version 4 (GPWv4): Population Count Adjusted to 

Match 2015 Revision of UN WPP Country Totals, Revision 11.” 
21 Population density thresholds used for each GHS-SMOD Class. 
22 Group of 4 pixels connected. Rook’s move connections. 
23 Built up density thresholds used for each GHS-SMOD. 
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